Nuclear Structure from Gamma-Ray Spectroscopy

2019 Postgraduate Lectures

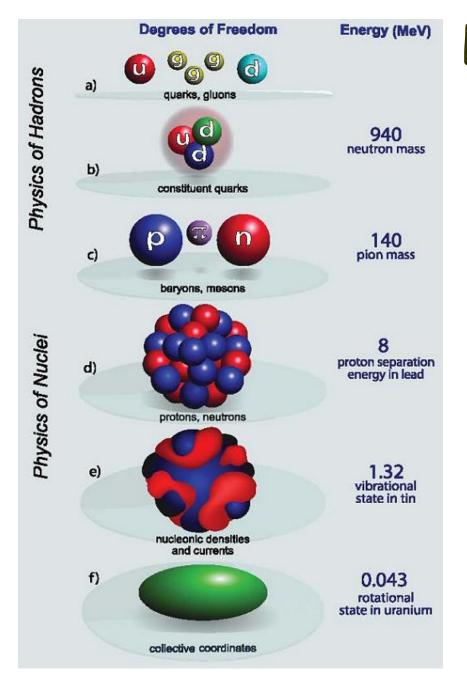
Lecture 1: What we can learn about nuclear behaviour from gamma-ray spectroscopy

Nuclear Physics

- The nucleus is one of nature's most interesting quantal few-body systems
- It brings together many types of behaviour, almost all of which are found in other systems but which in nuclei interact with one another
- The major elementary excitations in nuclei can be associated with single-particle or collective modes
- While these modes can exist in isolation, it is the <u>interaction</u> between them that gives nuclear spectroscopy its rich diversity

The Nucleus is Unique!

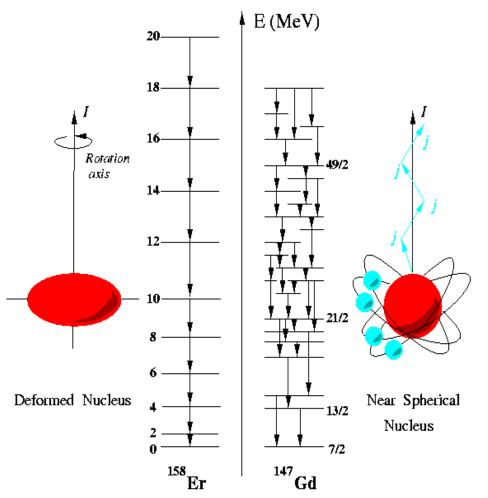
- The nucleus is a unique ensemble of strongly interacting fermions (nucleons)
- Its large, yet finite, number of constituents controls the physics of this <u>mesoscopic</u> system
- Both single-particle (out-of-phase) and collective (inphase) effects occur
- There is an analogy to a herd of wild animals. Individual animals may break out of the herd but are rapidly drawn back to the safety of the collective



Building Blocks and Energy Scales

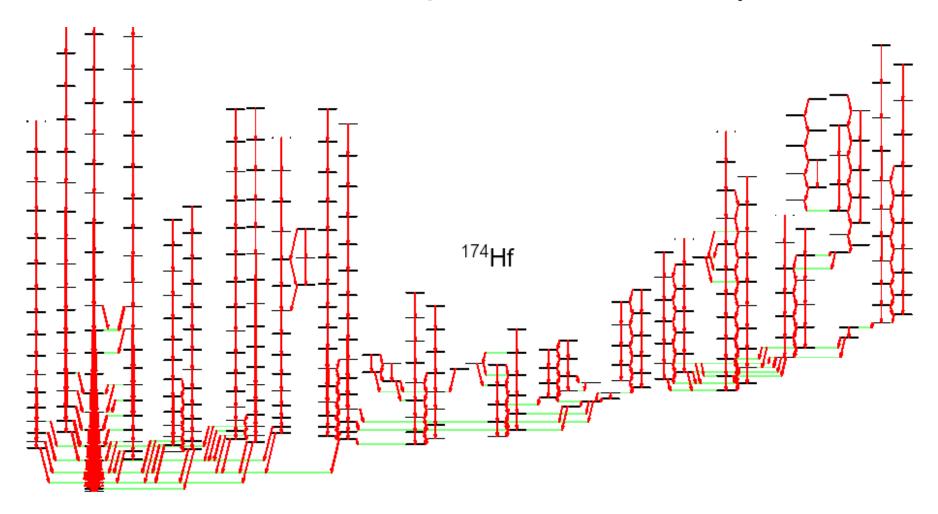
 Depending on energy and length scales, different constituents may be considered as the building blocks of the atomic nucleus

Generation of Angular Momentum



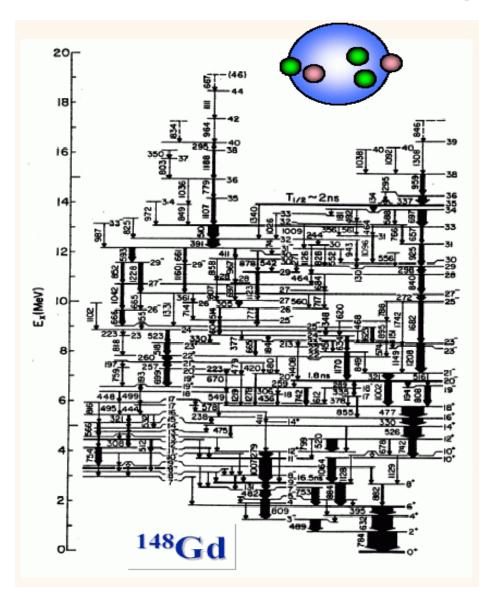
- There are two basic ways of generating high-spin states in a nucleus
- Collective (in-phase)
 motions of the nucleons:
 vibrations, rotations etc
 - Single-particle effects: pair breaking, particle-hole excitations. The individual spins of a few nucleons j_i generate the total nuclear spin

Collective Level Scheme



This nucleus has 347 known levels and 516 gamma rays!

Noncollective Level Scheme



- 148Gd is an example of a nucleus showing singleparticle behaviour
- Complicated set of energy levels
- No regular features
 e.g. band structures
- Some states are isomeric

Do Nuclei Really Rotate?

- Should we talk about collective motion in nuclei?
- We need to identify fast and slow degrees of freedom
- For example, in molecules electronic motion is the fastest, vibrations are 10^2 times slower and rotations 10^6 times slower. These motions have very different time scales so the wavefunction can be separated into a product of the terms
- For nuclei the differences are much smaller. Collective and single-particle modes can perhaps be separated, but they will <u>interact</u> strongly!

Nuclear Deformation

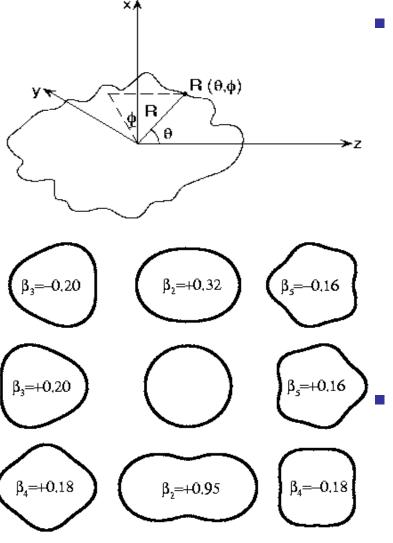
- Shape parameterisation
- Quadrupole deformation, β and γ
- Triaxiality

Evidence for Deformation

- 1. Large electric quadrupole moments Q₀
- 2. Low-lying rotational bands (E ∝ I[I+1])

The origin of deformation lies in the long range component of the nucleon-nucleon residual interaction: a quadrupole-quadrupole interaction gives increased binding energy for nuclei which lie between closed shells if the nucleus is deformed. In contrast, the short range (pairing) component favours sphericity

Simple Nuclear Shapes



• In the description of a 'drop' of nuclear matter with a sharp surface, the equipotential surface $R(\theta, \phi)$ can be expressed as a sum over spherical harmonics $Y_{A\mu}(\theta, \phi)$:

$$R(\theta, \varphi) = R_0[1 + \sum_{\lambda} \sum_{\mu} \alpha_{\lambda\mu} Y_{\lambda\mu}(\theta, \varphi)]$$

Here R_0 is the radius of a sphere and the $\alpha_{\text{A}\mu}$ coefficients represent distortions from the equilibrium spherical shape

Volume Conservation

 By integrating over the shape of the nucleus, the volume for small deformation is:

$$V \approx (4\pi/3) [1 + 3a_{00}/J(4\pi)] R_0^3$$

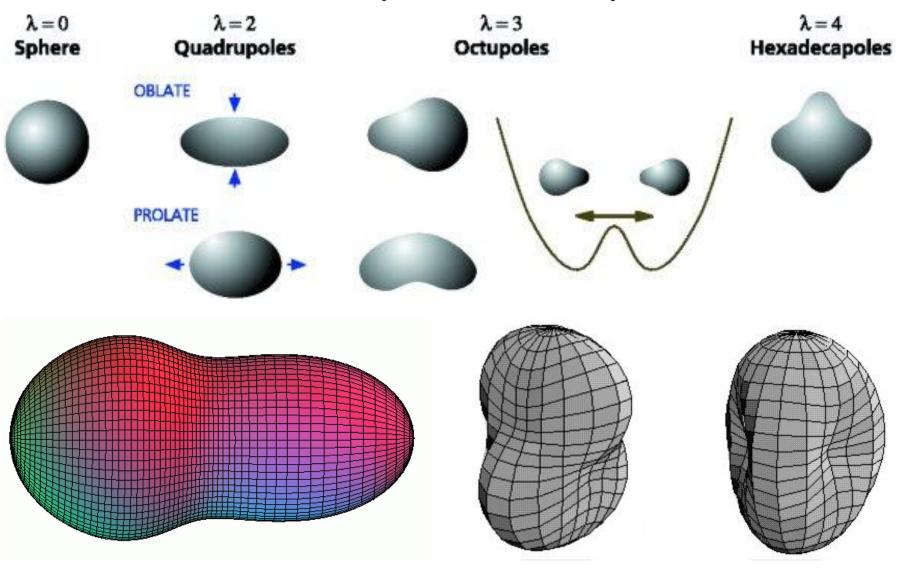
- To account for the incompressibility of nuclear matter we demand volume conservation under distortions and hence set $a_{00} = 0$
- A factor $C(a_{\lambda\mu})$ may be introduced to satisfy the conservation of volume more precisely:

$$R(\theta, \varphi) = C(\alpha_{\lambda\mu}) R_0[1 + \sum_{\lambda} \sum_{\mu} \alpha_{\lambda\mu} Y_{\lambda\mu}(\theta, \varphi)]$$

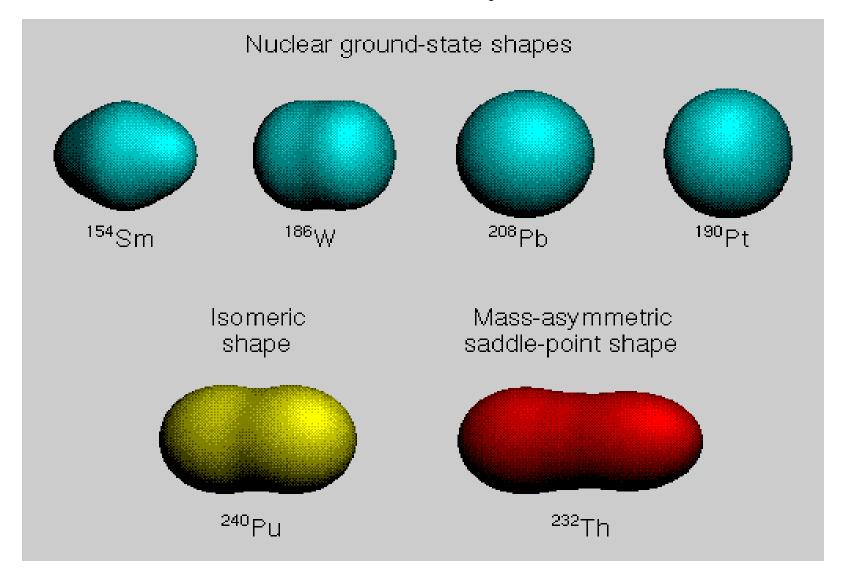
Most Important Multipoles

- The $\Lambda = 1$ term describes the displacement of the centre of mass and therefore cannot give rise to intrinsic excitation of the nucleus ignore!
- The Λ = 2 term is the most important term and describes quadrupole deformation
- The $\Lambda = 3$ term describes octupole shapes which can look like pears ($\mu = 0$), bananas ($\mu = 1$) and peanuts ($\mu = 2,3$)
- The Λ = 4 term describes hexadecapole shapes

Variety of Shapes



Theoretical Deformations



Tetrahedral Nuclei?

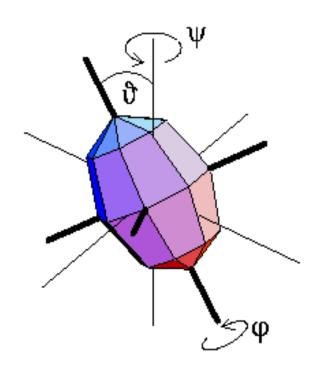
- The $\Lambda = 3$ multipole describes octupole shapes
- Pear shapes (with axial symmetry) occur when

$$a_{30} = a_{20} \neq 0$$

 Nuclei with tetrahedral (and octahedral) symmetry have been to predicted to occur when

$$a_{32} \neq 0$$
 with $a_{30} = a_{20} \sim 0$

Quadrupole Deformation



The Euler angles relate the intrinsic (nucleus) and lab frame axes

- The description of the nuclear shape simplifies if we make the principal axes of our coordinate system, i.e. (x, y, z), coincide with the nuclear axes (1, 2, 3)
- Then $a_{22} = a_{2-2}$, and $a_{21} = a_{2-1} = 0$
- The two independent coefficients
 a₂₀ and a₂₂, together with the
 three Euler angles, then
 completely define the system
- The shape then simplifies to:

$$R = C R_0[1 + \alpha_{20}Y_{20} + \alpha_{22}(Y_{22} + Y_{2-2})]$$

β₂ and γ Parameters

• An alternative parameterisation in the system of principal axes introduces the polar coordinates (β_2 , γ) through the relations:

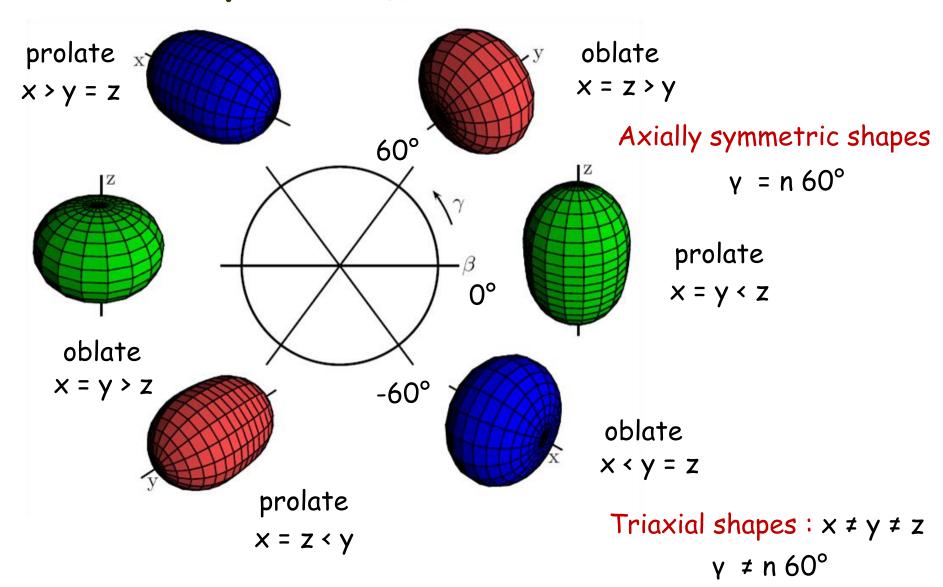
$$a_{20} = \beta_2 \cos \gamma$$
 and $a_{22} = -1/\sqrt{2} \beta_2 \sin \gamma$

• The parameter β_2 measures the total deformation:

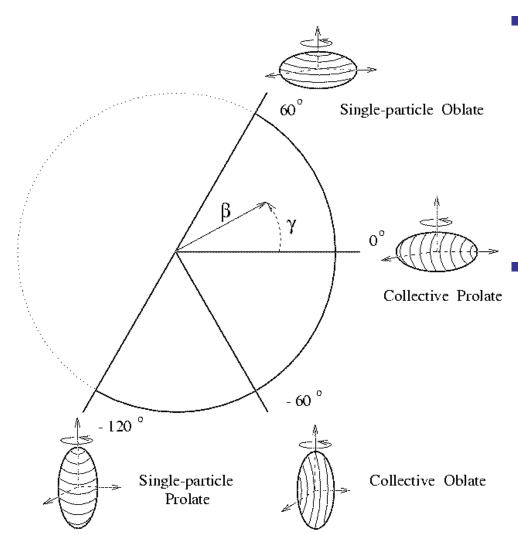
$$\beta_2^2 = \sum_{\mu} |\alpha_{2\mu}|^2$$

The parameter γ measures the lengths along the principal axes For $\gamma = 0^{\circ}$, the shape is prolate with the z-axis as the (long) symmetry axis

Quadrupole B2 and y Parameters



Lund Convention

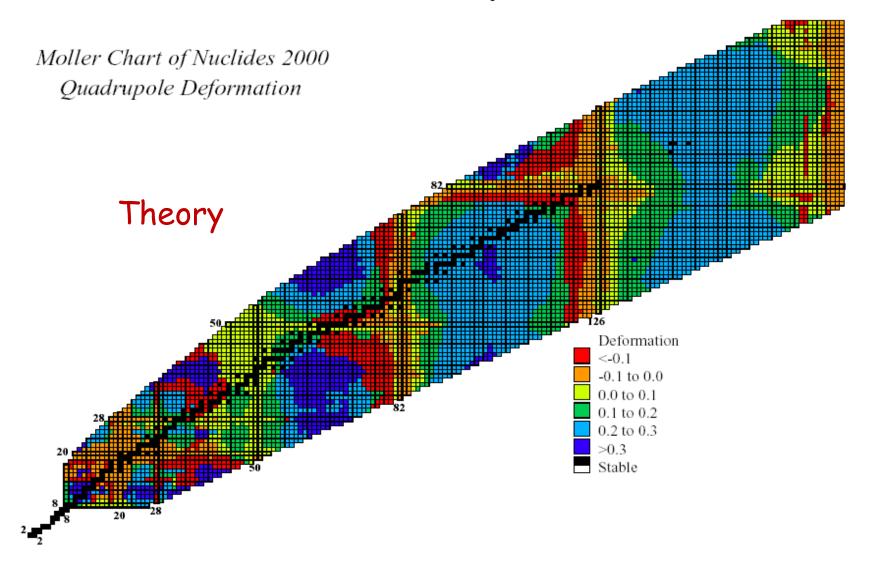


In order to specify the triaxiality of a deformed quadrupole intrinsic shape, the range of y values,

0° ≤ y ≤ 60° is sufficient

However, in order to specify a cranked system, we need three times this range, corresponding to the three principal axes about which the system can be cranked

Deformation Systematics



Approximate Value of B2

From an empirical fit to E2 transition rates (not valid near closed shells) it is found:

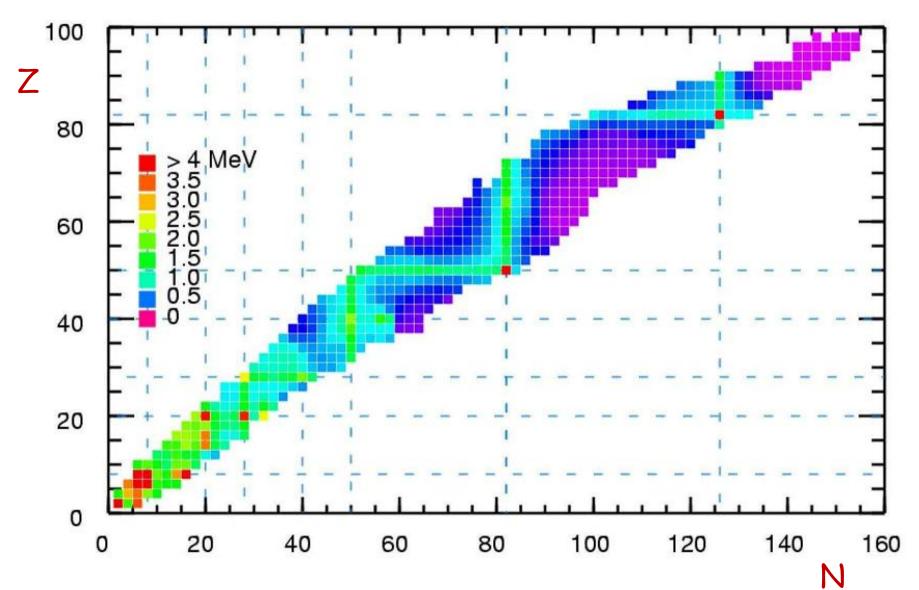
$$T_v(E2; 2^+ \rightarrow 0^+) = (4 \pm 2) \times 10^{10} Z^2 E_v^4 A^{-1}$$

This can be used for a 'Grodzins' estimate of the quadrupole deformation parameter:

$$\beta_2 \approx \{ 1225 / [A^{7/3} E(2^+)] \}^{1/2}$$
 with the 2⁺ energy expressed in MeV

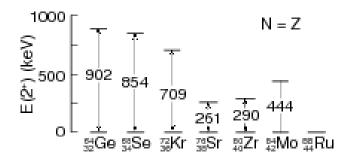
The energy of the 2^+ state of an even-even nucleus hence gives an insight into the nuclear deformation. The <u>lower</u> the 2^+ energy, the <u>larger</u> is β_2 and also the nuclear moment of inertia

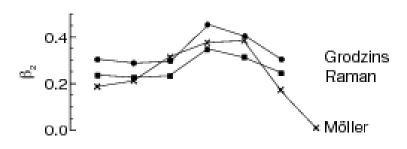
First 2+ Energies

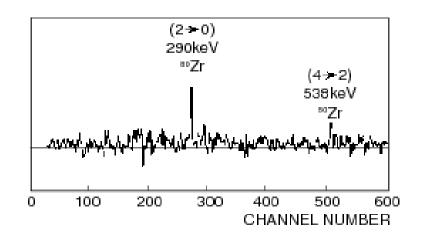


Structure Far From Stability

 Even one gamma ray can give an insight into nuclear behaviour, e.g. deformation







Triaxiality

• All three principal axes have different lengths:

$$R_x \neq R_y \neq R_z$$
 i.e. 'short', 'long' and 'intermediate' axes

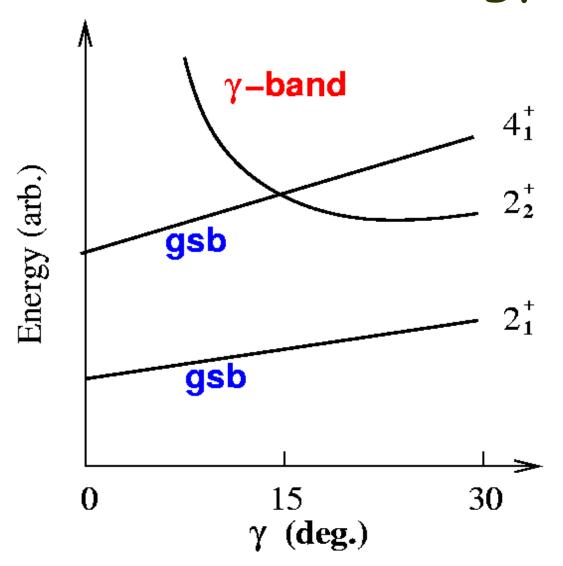
- There is no symmetry axis (however, there is reflection symmetry) so K is not a good quantum number
- The low-spin energy levels in even-even nuclei move around as a function of y
- For γ ≠ 0° an effective quadrupole deformation parameter may be defined:

$$\beta_{eff} = \beta \left\{ 4 \sin^2(3\gamma) / \left[9 - \sqrt{(81 - 72 \sin^2(3\gamma))} \right] \right\}^{1/2}$$

Asymmetric Rotor Model

- The Asymmetric Rotor Model (ARM) investigates rigid triaxial shapes
- The energies of the first two 2+ states are: $E(2^+) = (6\hbar^2/2\Im) \{9[1 \pm \sqrt{(1-8/9\sin^2(3\gamma))}] / 4\sin^2(3\gamma)\}$
- Hence from the experimental energies of the first 2⁺ states, a value of | y | can be deduced
- The higher spin states of the ground-state and γ -bands move around in energy as γ changes
- Increasing y tends to <u>lower</u> the energy levels of the y-band relative to the ground-state band

ARM Energy Levels



- These are the lowest energy levels of an asymmetric rigidrotor predicted by the ARM
- Note that the second 2+ state falls below the first 4+ state for |v| ≥ 15°

More ARM Relations

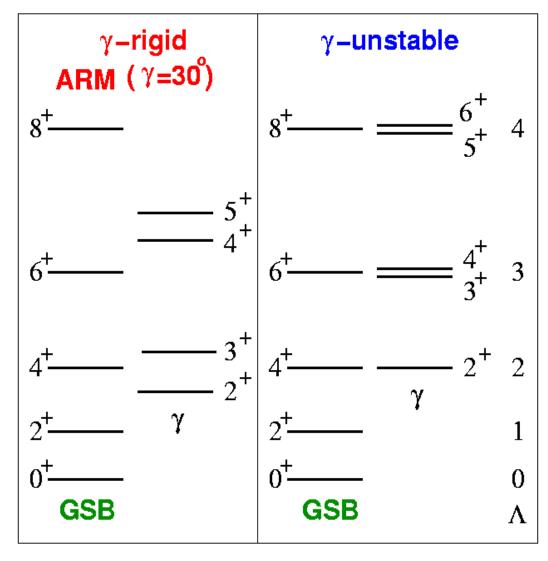
For the odd-spin members of the γ band:

$$E(3^+) = E_1(2^+) + E_2(2^+)$$
 and $E(5^+) = 4 E_1(2^+) + E_2(2^+)$

Percentage differences for N = 76 isotones:

Nucleus	<u> </u> y	<u>R₃ (%)</u>	R ₅ (%)
¹²⁸ Te	26.6°	-1.21	_
¹³⁰ Xe	27.6°	+1.55	
¹³² B a	26.3°	-0.98	
¹³⁴ Ce	25.3°	-1.79	
¹³⁶ Nd	25.7°	+0.38	+13.2
¹³⁸ Sm	27.0°	+0.79	+18.7
¹⁴⁰ G d	26.8°	-2.53	+16.5

y-rigidity or y-softness?



- The ARM considers the rotation of a rigid triaxial shape
- The other extreme is a completely flat potential with respect to γ, with γ oscillating uniformly between γ = 0° (prolate) and γ = 60° (oblate)
 - Since the average is $\gamma = 30^\circ$, we compare the two models at this value

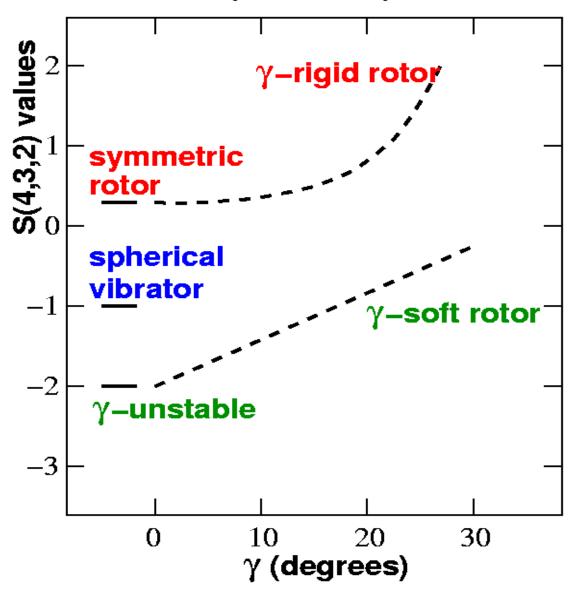
Gamma-Band Staggering

- As y increases, a staggering arises between the odd-spin and even-spin members of the band
- One way to measure this is to form the ratio: $S(4,3,2) = \{ [E_2(4^+) - E_1(3^+)] - [E_1(3^+) - E_2(2^+)] \} / E_1(2^+) \}$
- The energies, in units of $E_1(2^+)$, are:

```
Model E_2(2^+) E_1(3^+) E_2(4^+) S(4,3,2) γ-rigid (30°) 2.0 3.0 5.67 +1.67 γ-unstable 2.5 4.5 -2.0
```

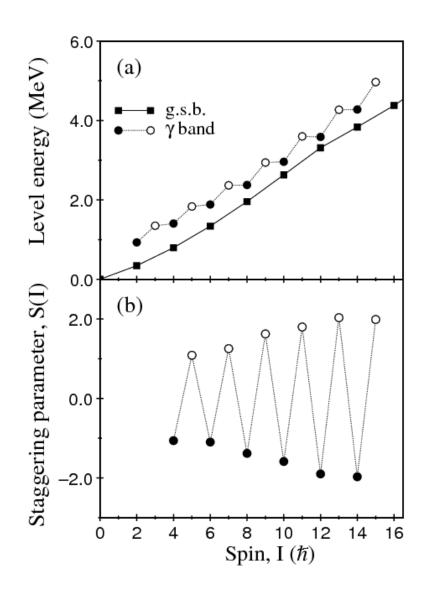
- Spherical Harmonic Vibrator: S(4,3,2) = -1.0
- Symmetric Rotor ($\gamma = 0^{\circ}$): S(4,3,2) = +0.33

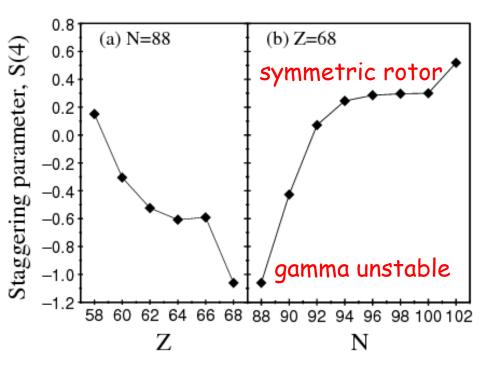
S(4,3,2) Ratios vs. y



The S(4,3,2) values for various types of motion are shown here as a function of the y deformation

Staggering in ¹⁵⁶Er





¹⁵⁶Er (Z=68, N=88) is a 'transitional' nucleus

Do Triaxial Nuclei Really Exist?

- Considerable effort has been made over the last twenty years to obtain conclusive evidence of (static) triaxial nuclear shapes
- These efforts have recently been intensified by the experimental evidence of <u>chirality</u> (handedness) and the <u>wobbling</u> (precession) mode in nuclei (discussed later)
- Triaxiality is an essential prerequisite for the manifestation of both of these effects in the atomic nucleus!

Vibrational Motion

Spherical Harmonic Vibrator

Spherical Harmonic Vibrator

$$n=3$$
 _______ $0^+, 2^+, 3^+, 4^+, 6^+$
 $n=2$ _______ $0^+, 2^+, 4^+$
 $n=1$ _______ 2^+

- A dynamic deformation
- We assume the nucleus is spherical in its ground state and the excited states are due to harmonic oscillations of the nuclear surface
- For a quadrupole vibration, the potential may be written:

$$V_{vib} = \sum_{\mu} \{ \frac{1}{2} C_2 |\alpha_{2\mu}|^2 + \frac{1}{2} B_2 |d\alpha_{2\mu}/dt|^2 \}$$

where $\overline{C_2}$ is a parameter representing the restoring potential and B_2 is associated with the mass carried by the vibration. This mode is possible since C_2 , determined by the surface tension, is low

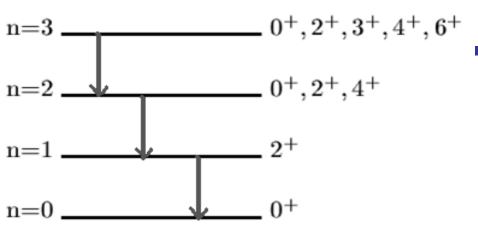
Vibrator Eigenvalues

The eigenvalues of the spherical harmonic vibrator are:

$$E_n = E_0 + n \hbar \omega_2$$
 with $\omega_2 = \int (C_2/B_2)$

- E₀ represents the intrinsic and zero point motion of the oscillations
- The energy levels for different n are equally spaced
- Each phonon carries angular momentum 2 (Y_2) and has positive parity

Allowed Transitions



 For quadrupole vibrations, electromagnetic transitions are only allowed between states with:

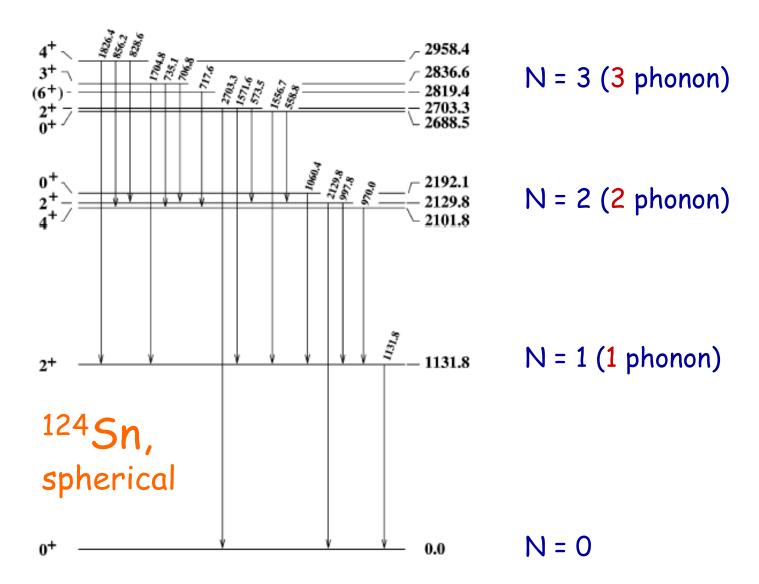
$$\Delta n = \pm 1$$

For an E2 transition:

$$\langle I=2,n=1||E2||I=0,n=0\rangle = J(5) Q_{vib}e$$
 where Q_{vib} is calculated from the Liquid Drop Model: $Q_{vib} = (3ZR^2/4\pi) J(\hbar/2B_2\omega_2)$

• The magnetic moment is constant for $\Lambda = 2$ states and therefore M1 transitions are not allowed

Multiphonon Vibrational States



Octupole Vibrations

$$n=2$$
 _____ $0^+, 2^+, 4^+, 6^+$

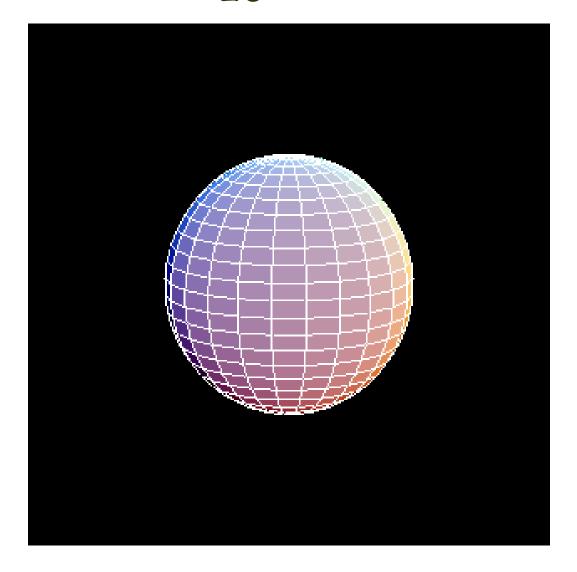
$$n=2$$
 _____ $0^+, 2^+, 4^+$ $n=1$ _____ $3^ n=1$ _____ 2^+
 $n=0$ _____ 0^+
 $n=0$ _____ 0^+
 $n=0$ _____ 0^+
 $n=0$ _____ 0^+
 $n=0$ _____ 0^+

 For octupole vibrations, each phonon carries angular momentum 3 (Y₃) and negative parity

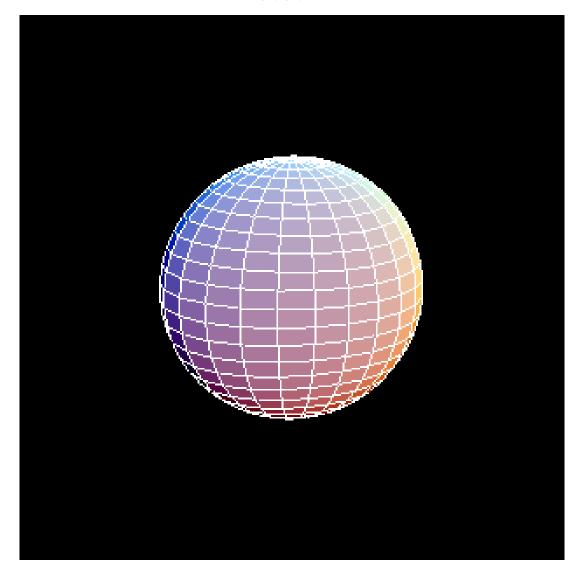
- The energy of the first excited state (3-) is roughly twice the energy of the quadrupole case
- For real nuclei, an anharmonic oscillator is needed. This removes the degeneracy of the n=2 states (0⁺, 2⁺, 4⁺) of the quadrupole vibrator. It also displaces the $\Lambda=2$ and $\Lambda=3$ states relative to each other

Vibrational Movies...

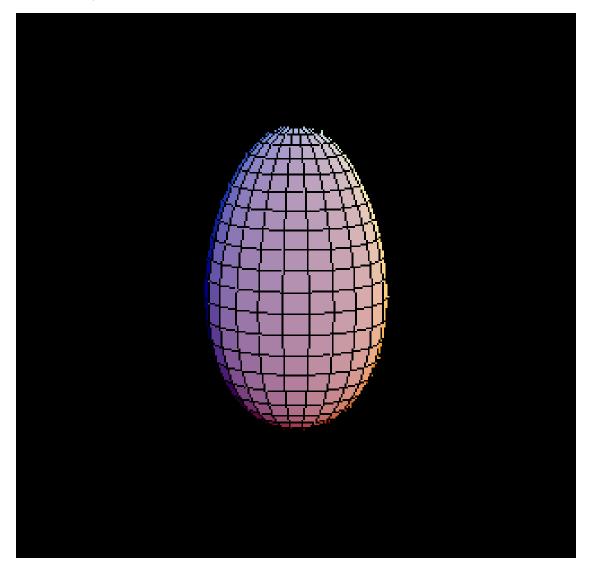
Beta (Y₂₀) Vibration



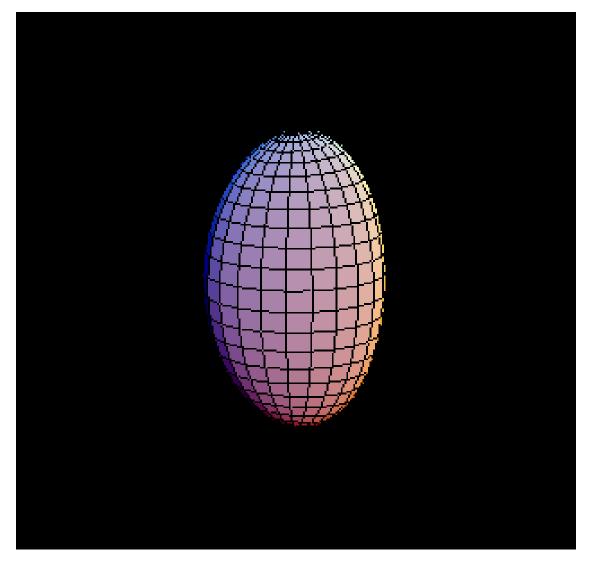
Gamma (Y₂₂) Vibration



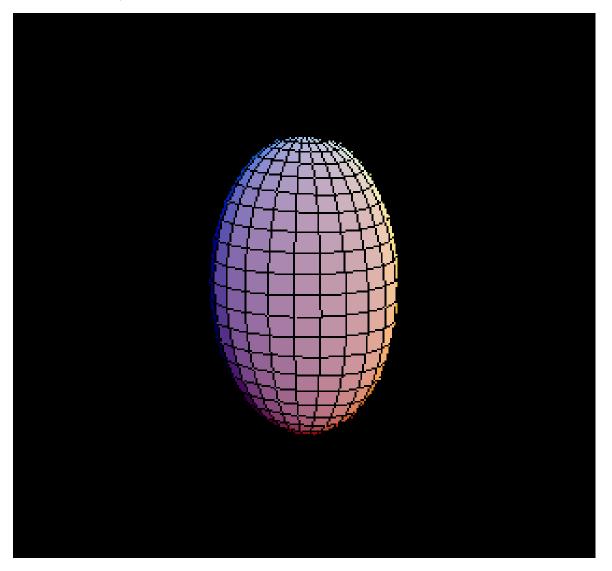
Octupole (Y₃₀) Vibration



Octupole (Y₃₁) Vibration



Octupole (Y₃₂) Vibration



Octupole (Y₃₃) Vibration

